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Abstract—We consider the problem of communicating over
an unknown and arbitrarily varying channel, using feedback.
This paper focuses on the problem of determining the input
behavior, or more specifically, a prior which is used to randomly
generate a codebook. We pose the problem of setting the prior
as a universal sequential prediction problem using information
theoretic abstractions of the communication channel. For the case
where the channel is block-wise constant, we show it is possible to
asymptotically approach the best rate that can be attained by any
system using a fixed prior. For the case where the channel may
change on each symbol, we combine a rateless coding scheme
with a prior predictor and asymptotically approach the capacity
of the average channel universally for every sequence of channels.

I. INTRODUCTION

We consider the problem of communicating over an un-
known and arbitrarily varying channel, with the help of
feedback. We would like to minimize the assumptions on
the communication channel as much as possible, while using
the feedback link to learn the channel. The main questions
with respect to such channels are how to define the expected
communication rates, and how to attain them universally,
without channel knowledge.

The traditional models for unknown channels [1] are those
of a compound channel, in which the channel law is selected
arbitrarily out of a family of known channels, and an arbitrarily
varying channels (AVC-s), in which a sequence of channel
states is selected arbitrarily. The well known results for these
models [1] do not assume adaptation and therefore the AVC
capacity, which is the supremum of the communication rates
that can be obtained with vanishing error probability over any
possible occurrence of the channel state sequence, is in essence
a worst-case result. For example, if one assumes that yi, the
channel output at time i, is determined by the probability law
Wi(yi|xi) where xi is the channel input, and Wi is an arbitrary
sequence of conditional distributions, clearly no positive rate
can be guaranteed a-priori, since for example it may happen
that all Wi have zero capacity, and therefore the AVC capacity
is zero (and may be non-zero only if a constraint on Wi is
defined).

Other communication models, which allow positive com-
munication rates over such AVC-s were proposed by us and
other authors [2], [3], [4], [5]. Although the channel models
these papers consider are different, the common features dis-
tinguishing them from the traditional AVC setting are that the
communication rate is adaptively modified by using feedback,

and that the target rate is known only a-posteriori, and is
gradually learned throughout the communication process. By
adapting the rate, one avoids worst case assumptions on
the channel, and can achieve positive communication rates
when the channel is good. However, in the aforementioned
communication models, the distribution of the transmitted
signal is fixed and independent of the feedback, and only
the rate is adapted. Clearly, with this limitation these systems
are incapable of universally attaining the channel capacity in
many cases of interest. In a crude way we may say that
the aforementioned works achieve various kinds of “mutual
information” for a fixed prior and any channel from a wide
class, by mainly solving problems of universal decoding and
rate adaptation. However to obtain more than the “mutual
information”, i.e. the “capacity”, one would need to select the
prior in a universal way.

Prior adaptation using feedback is well known for static or
semi-static channels. Two familiar examples are bit and power
loading performed in Digital Subscriber Lines (DSL-s) [6], and
precoding for in multi-antenna systems [7] which is performed
in practice in wireless standards such as WiFi, WiMAX and
LTE. The idea is that if the channel can be assumed to be
static for a period of time sufficient to close a loop of channel
measurement, feedback and coding, then an input prior close
to the optimal one can be chosen. All known models for
prior adaptation use the assumption that the knowledge of the
channel at a given time yields non trivial statistical information
about future channel states, but do not deal with arbitrary
variation.

The question that we deal with in this paper is: assuming a
channel which is arbitrarily changing over time, is there any
merit in using feedback based prior adaptation, and what rates
can be guaranteed?

To answer the question we adopt an abstract model of the
communication system. In addition to assuming perfect feed-
back, we make two assumptions which are only approximately
true:

1) Given a prior Q, the mean mutual information between
the channel input and output 1

nI(Xn; Yn) is an achiev-
able rate.

2) Given a large enough number of channel inputs and out-
puts, the average channel W (y|x) = 1

n

∑n
i=1 Pr(yi|xi)

can be perfectly known at the receiver (and fed back to
the transmitter).

Under this abstract model we consider two scenarios, one
in which the channel is changing in a block-wise manner,
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and one in which the channel is changing on each symbol
individually. For each model we define attainable rates which
have a competitive interpretation, and using tools from the
theory of universal prediction, present prediction systems that
attain these rates universally. The first model, which is rather
artificial, is used mainly as a tool to gain insight into the
problem. The attainable rate in this model is the maximum
over the prior of the block-averaged mutual information (i.e.
the best rate that can be attained by any system using a
fixed prior). For the second model, the attainable rate is the
capacity of the time-averaged channel (which is a bound on
the rate achievable with per-symbol operation). Although we
do not present and analyze the full communication system, it
is reasonable to assume that by applying these methods, such a
system can be devised, and provide improved results over the
previous ones [5]. Due to space limits, the details and proofs
will appear in a full paper on the subject [8], whose draft is
currently available on the web.

The paper is organized as follows: Section II deals with the
problem of prior prediction for a block-wise arbitrarily varying
channel, Section III deals with the problem of prior prediction
for a symbol-wise varying channel, and Section IV is devoted
to discussion and extensions.

II. BLOCK-WISE ARBITRARY CHANNEL VARIATION

A. Problem statement

Let {Wi} be a sequence of memoryless channels, defined
through conditional distributions Wi(y|x) where x ∈ X and
y ∈ Y represent an input and output symbol respectively.
Except when specifically noted, we assume X is a finite
alphabet, and Y may be discrete or finite.

We assume the channel is changing arbitrarily over blocks
i = 1, . . . , n. Each block contains a large number of channel
uses j = 1, . . . , N , in each of which the same memoryless
channel law Wi applies.

Let {Qi} be a sequence of priors. We assume that the
receiver knows Wi during block i, and that this information
can be fed bad to the transmitter at the end of the i-th block.
So the sequence of past channels is known at the transmitter
and receiver, and can be used to determine the prior for the
next block. A predictor Q̂i is a function Q̂i(W i−1

1 ) which
determines Qi as a function of the past channels.

We assume that the following rate is be achievable:

R =
1
n

n∑
i=1

I(Qi,Wi) (1)

where I(Q,W ) denotes the mutual information with a prior
Q and a channel W . We would like to characterize rates R
as a function of the sequence of channels {Wi} which have
an operational or competitive meaning, and which can be
achieved universally for every {Wi}, by a scheme sequentially
determining Qi as a function of W i−1

1 .

B. Potential target rates

With respect to the sequence {Wi} we can define various
meaningful information theoretic measures which result from

optimizing rate (1) with respect to the priors. The maximum
rate is the capacity when the sequence is known a-priori:

C1(Wn
1 ) = max

{Qi}:( 1
n

∑
Qi)∈Q

1
n

n∑
i=1

I(Qi,Wi) (2)

In fading channels this value is termed the “water pouring”
capacity (water pouring in time [9]), where it is required to
meet the constraint only on average. A lower target is the mean
of the individual capacities:

C2(Wn
1 ) =

1
n

n∑
i=1

C(Wi) =
1
n

n∑
i=1

max
Q∈Q

I(Q,Wi) (3)

In a fading channel this would mean constraining to an equal
power in time. The maximum rate that can be obtained with a
single fixed prior when the sequence is known, or alternatively
the maximum rate that can be attained when only the sequence
distribution is known (i.e. it is known up to order) is:

C3(Wn
1 ) = max

Q∈Q

1
n

n∑
i=1

I (P,Wi) (4)

Lastly, the capacity of the averaged channel is:

C4(Wn
1 ) = max

Q∈Q
I

(
P,

1
n

n∑
i=1

Wi

)
(5)

C4 is an upper bound on the achievable rate of a system
operating symbol-by-symbol (since this system effectively
sees the averaged channel, see the definition of the collapsed
channel [5]).

Clearly, C1 ≥ C2 ≥ C3 ≥ C4 where the first three
inequalities result from the order of maximization and the
last one results from the convexity of the mutual information
with respect to the channel. If there are no constraints then
C1 = C2.

The question we can ask regarding each of these targets
C(Wn

1 ), is: does there exist a predictor Q̂i(W i−1
1 ) such that

for every sequence we have:

∀{Wi} : R =
1
n

n∑
i=1

I
(
Q̂i(W i−1

1 ),Wi

)
≥ C(Wn

1 )− δn

With δn → 0 ? If such a predictor exists, we say that the target
is universally attainable.

C. Categorization of the problem

The target rate C3 is special in being an additive function for
each value of Q. Universally attaining C3 falls into a widely
studied category of universal prediction problems [10], [11],
[12]. In the full paper [8] we show that C2 is not in general
universally attainable, and that the regret δn with respect to
C3 is at least O(

√
n). Therefore C3 is a reasonable target for

universal prediction. Furthermore, in the case of C3, the simple
predictor defined by following the prior which optimizes the
a-posteriori rate Q̂i = argmax

Q

∑i−1
t=1 I (Q,Wt) does yield a

vanishing regret.
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D. A prediction algorithm

The prediction algorithm we propose is based on a well
known technique of a weighted average predictor, using ex-
ponential weighting [11, Secion 2.1]. The main novelty is the
extension to a continuous set of references.

We assume the input alphabet is discrete. Let ∆|X | be the
unit simplex ∆|X | , {q :

∑|X |
i=1 qi = 1}. The constraint set Q

is a subset of ∆|X | and we assume that this subset is convex. A
weight function w(Q) is any non-negative function w : Q →
R+ with

∫
Q w(Q)dQ = 1. All integrals in the sequel are by

default over Q.
Define the following weight function:

wi(Q) =
eη
∑i−1

t=1 I(Q,Wt)∫
Q e

η
∑i−1

t=1 I(Q,Wt)dQ
(6)

and the predictor:

Q̂i =
∫
Q
Q · wi(Q) · dQ (7)

The weighting function gives a higher weight to priors that
succeeded in the past and the predictor averages the potential
priors with respect to the weight. We define the regret as

Rn(Q) =
n∑
i=1

I(Q,Wi)−
n∑
i=1

I(Q̂i,Wi) (8)

The following theorem gives a bound on the regret of this
predictor, which is proven in the full paper [8].

Theorem 1. Let Q ⊂ ∆|X | be a convex subset of the
unit simplex defined over the input alphabet size |X |, and
I(Q,W ), Q ∈ Q be any bounded function 0 ≤ I(Q,W ) ≤
Imax which is concave in its first argument. Then for any n ≥
3, the predictor defined by (6) and (7) with η =

√
|X | lnn
n ·Imax

satisfies the constraint Q̂i ∈ Q and yields a regret (8) bounded
by

∀Q : Rn(Q) ≤ 3Imax ·
√

dim(Q) · n lnn (9)

Where dim(Q) ≤ |X | − 1 is the dimension of the set Q.1

Note that the theorem applies to more general gain functions
than the mutual information, since it uses only the properties
of concavity and boundness. In the case of mutual information
we have Imax = log max(|X |, |Y|).

Dividing (9) by n we obtain a convergence rate of

O

(√
lnn
n

)
of the normalized regret, which is slightly worse

than the asymptotic bound of O
(√

1
n

)
from Section II-C.

The additional
√

lnn may be attributed to the fact the space
of reference predictors is continuous, but we did not prove
that this is the best convergence rate.

1We define a dimension of a convex set S to be the dimension of the
smallest affine set containing S. Loosely speaking, this is the number of
parameters required to specify a point in S.

E. Performance analysis

In this section we introduce the exponential weighting
concept and present the proof outline of Theorem 1.

Define the instantaneous regret ri(Q) and the cumulative
regret Ri(Q) as functions of Q:

ri(Q) = I(Q,Wi)− I(Q̂i,Wi) (10)

Ri(Q) =
i∑
t=1

ri(Q) =
n∑
i=1

I(Q,Wi)−
n∑
i=1

I(Q̂i,Wi) (11)

These functions express the regret with respect to a competing
fixed prior Q. We sometimes omit the dependence on Q for
brevity. For η > 0 of our choice, we define the following
potential function:

Φ(u) =
∫
Q
eηu(Q)dQ (12)

where u : Q → R is an arbitrary function defined over the unit
simplex. Note that for large values of η ·u, Φ(u) approximates
maxQ(u). Following the ideas of weighted average predictors
using potential functions, the proof consists of two parts:

1) Bounding the growth rate of Φ(Ri(Q)) over i =
1, 2, . . . , n for any Q, based on the fact that the growth
occurs in a direction orthogonal to the gradient of this
function with respect to Ri(Q).

2) Relating maxQRn(Q) to Φ(Rn(Q))
The techniques we use are based on Cesa-Bianchi and Lugosi’s
book [11] (see Theorem 2.1, Corollary 2.2, Theorem 3.3). The
proof is given in the full paper [8].

III. SYMBOL-WISE ARBITRARY CHANNEL VARIATION

In this section we define a more realistic problem, where the
channel may change arbitrarily every symbol. We show that
under this scenario we can only obtain the target rate C4, and
present an iterative-rateless coding scheme, which under the
abstractions used in this paper, achieves the target rate with
an asymptotically vanishing regret.

A. Problem setting

We assume that there are n channel uses i = 1, 2, . . . , n (not
blocks, as in the previous case), and the channel in symbol i is
Wi(y|x) The sequence of channels Wi arbitrary and unknown
to the predictor. Let W [i,i+N−1] be the averaged channel over
the segment {i, i+ 1, . . . , i+N − 1}, i.e.

W [i,i+N−1] =
1
N

i+N−1∑
t=i

Wi(y|x) (13)

We assume that, if all input symbols x ∈ X are transmitted
with non zero probability, and N is large enough, then
assuming the receiver knows the transmitted signal x (e.g.
after decoding, or by using known symbols), the averaged
channel could be perfectly known by the receiver. However,
clearly, it is not possible to measure the channel over a single
use. When the channel is known at the receiver it can be fed
back to the transmitter. We also assume that it is possible
to transmit with an i.i.d. input distribution Q(x) over a large
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enough segment {i, i+1, . . . , i+N−1}, and achieve a rate of
R = I(Q,W [i,i+N−1]). As opposed to Section II-A, we make
the scenario more realistic by not assuming the transmitter
knows R in advance. For the sake of simplicity we assume
that there is no constraint on the input, i.e. Q = ∆|X |. See
comments about the validity of these assumptions in the full
paper [8].

Since in this scenario, we are not constrained to use specific
encoding blocks, we need to determine the coding blocks and
the times that the transmitted signal is known, and feedback
is conveyed to the transmitter. Under these assumptions, we
would like to construct a coding scheme (in the sense of priors
and code blocks) and a prediction scheme that will universally
approach one of the target rates defined in Section II-B. In
the full paper [8] we present an example showing why C3

cannot be universally attained in this scenarios, and therefore
our target rate is C4.

B. A rateless coding scheme

In this section we propose an outline of a coding scheme,
and pose the resulting prediction problem. One of the problems
is the determination of the rate R before knowing the channel.
To solve this problem we suggest using rateless codes [13].
We send K bits on each block. A codebook of exp(K) infinite
sequences is generated, and the sequence representing the
message is transmitted symbol by symbol, until the receiver
decides to decode, and informs the transmitter that the block
ended. This means that when the channel is good, the block
will become shorter, and vice versa. We divide the time into
multiple such blocks as done in [3], [4].

We choose to use an i.i.d. prior during each block, and
update the prior only at the end of the block. This choice is
motivated by the following considerations:

• Varying the prior throughout the block creates complex
relations between the past channel input and output values
x, y and the future values of x, and inserts memory which
complicates the analysis.

• Assuming that no constant symbols (pilots) are transmit-
ted, the estimation of the channel W is done based on the
encoded sequence, which is known to the receiver only
after decoding (at the end of the block).

The high level scheme we propose is as follows:

1) The transmitter sends blocks of K bits to the receiver
2) Each block i is transmitted using the i.i.d. prior Q̂i,

which is computed by a prior predictor that will be
defined later on.

3) The receiver decides when the block terminates, by
estimating when there is enough information from the
channel output to reliably decode the bits.

4) At the end of the block, the receiver estimates the aver-
aged channel over the block, and informs the transmitter
through the feedback link that the block has ended, as
well as the estimated averaged channel.

5) Both sides compute, based on the sequence of previously
measured averaged channels, a prior Q̂i to be used for
the next block.

We denote by i the index of the block, and by W i the
averaged channel over the block, i.e. if the block i starts at
symbol ki and ends at ki+1 − 1, then we denote by W i ,
W [ki,ki+1−1] the average channel over the block, and by Q̂i
the (i.i.d.) prior used. Under the abstraction, the length of the
i-th block is:

mi =
K

I(Q̂i,W i)
(14)

where K is the number of bits.

C. A prediction algorithm

One of the issues in the rateless scheme is that if the
channel has zero capacity (always, or from some point in
time onward), it is possible that one of the blocks will extend
forever and will never be decoded. However we must avoid
a situation where the channel has non-zero capacity (which
our competition enjoys), while a badly chosen prior yields
I(Q̂i,W i) = 0. If this happens then the scheme will get stuck
since the block will never be decoded, and hence there will be
no chance to update the prior. In addition, notice that selecting
some inputs with zero probability makes the predictor blind
to the channel values over these inputs. To resolve these
difficulties we construct the predictor as a mixture between
an exponentially weighted predictor and a uniform prior. We
use a result by Shulman and Feder [14], which is a bound on
the loss that the uniform prior experiences with respect to the
optimal prior. This guarantees that if the capacity is non-zero,
then the uniform prior will yield a non-zero rate, and hence
the block will not last indefinitely.

Denote by i the block index, and by mi the block length.
We define ti =

∑j
i=1mj as the time at the end of the i-th

block. W i is the averaged channel over block i, and W
i

is the
averaged channel from the beginning of transmission until the
end of block i. Suppose that at time n, B blocks have been
sent (and the B + 1-th block is under transmission), then the
regret at time n is:

Rn(Q) = n · I(Q,W [1,n])−K ·B (15)

The regret includes the loss from the not decoding the last
block which started before time n. We use an exponentially
weighted predictor mixed with a uniform prior. The weight
function is defined as

wi(Q) = c · eηti·I(Q,W
i
) (16)

where c is a constant normalizing to
∫
wi(Q)dQ = 1. Let

U = 1
|X |1 be the uniform prior over X . Then the predictor is

defined as:

Q̂i = (1− λ)
∫

∆|X|

wi(Q)QdQ+ λU (17)

The parameters λ, η and K will be chosen later on.
The following theorem states a bound on the regret of this

predictor, which is proven in the full paper [8].

Theorem 2. Let I(Q,W ) denote the mutual information with
prior Q and channel W , where the input alphabet X and the
output alphabet Y are finite. Consider the predictor defined by
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(17), in conjunction with the rateless communication scheme
defined in Section III-B. Then for a suitable choice of the
parameters K, η, λ as functions of n the regret (15) satisfies:

∀Q : Rn(Q) ≤ r0 · n ·
(

lnn
n

) 1
4

(18)

for any n ≥ 3, where r0 is constant in n.

The values of K, η, λ and r0 are specified in the full paper
[8]. In other words, the normalized regret is bounded by
O
(

lnn
n

) 1
4 , which converges to zero but at a worse rate, by

a square root, than we had in Section II-D.

IV. DISCUSSION

The scheme we have proposed in Section III is based on
an abstraction of the communication channel. To make it an
actual communication scheme one may use a rateless scheme
similar to the one proposed in [4]. However the predictor needs
to be adapted to deal with overheads of the rateless scheme
in achieving the mutual information (i.e. excess block length
compared to (14)), as well as estimation errors of the averaged
channel.

In a previous paper [5] we have obtained a result that over
the modulo-additive channel with an unknown noise sequence,
it is possible to attain universally rates comparable to those
obtained by any fixed length encoder and decoder operating
over sub-blocks. This result relies on the fact that the capacity
achieving prior is fixed for any noise sequence. The current
work is a step toward removing this assumption, since the
capacity of the averaged channel C4 is a bound on the rate
that can be obtained reliably by an encoder and decoder
operating on a single symbol (see the “collapsed channel”
[5]). By combining k symbols into a single super-symbol, we
can extend the result to obtaining a rate which is better than
the rate obtained by block encoder and decoder operating over
chunks of k symbols. Therefore the current result suggests that
it is possible to compete with finite block systems universally
for all vector channels that are memoryless in the input, i.e.
that have the form Pr(Yn

1 |Xn
1 ) =

∏n
i=1Wi(Yi|Xi), for an

arbitrary sequence of channels Wi (compared to an arbitrary
noise sequence, in the previous result).

It is interesting to compare the current results with the
AVC capacity. The discrete memoryless AVC capacity without
constraints [1, Theorem 2] may be characterized as follows:
let W be the set of possible channels that are realized by
different channel states (for example in a binary modulo-
additive channel with an unknown noise sequence, there are
two channels in the set - one in which y = x and another in
which y = 1− x). Then the randomized code capacity of the
AVC is:
CAV C = max

Q
min

W∈conv(W)
I(Q,W )

= min
W∈conv(W)

max
Q

I(Q,W ) = min
W∈conv(W)

C(W )

(19)

where conv(W) is the convex hull of W , which represents
all channels which are realizable by a random selection of
the channel state (in the example, conv(W) is the set of all

binary symmetric channels). In the current work, the target
rate is the capacity of the averaged channel C(W ). Since
by definition W ∈ conv(W), we have C(W ) ≥ CAV C .
What we possibly gain is that the rate depends on the actual
occurrence of W , rather than on the worst case. This is
especially important when CAV C = 0, i.e. we cannot a-priori
preclude the possibility of having zero capacity. In this case,
by adaptation we may have C(W ) > 0, depending on the
actual channel occurrence.
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